API介绍
1 |
|
基本概念
socket缓冲区
每个 socket 被创建后,都会分配两个缓冲区,输入缓冲区和输出缓冲区。
write()/send() 并不立即向网络中传输数据,而是先将数据写入缓冲区中,再由TCP协议将数据从缓冲区发送到目标机器。一旦将数据写入到缓冲区,函数就可以成功返回,不管它们有没有到达目标机器,也不管它们何时被发送到网络,这些都是TCP协议负责的事情。
TCP协议独立于 write()/send() 函数,数据有可能刚被写入缓冲区就发送到网络,也可能在缓冲区中不断积压,多次写入的数据被一次性发送到网络,这取决于当时的网络情况、当前线程是否空闲等诸多因素,不由程序员控制。
这些I/O缓冲区特性可整理如下:
- I/O缓冲区在每个TCP套接字中单独存在;
- I/O缓冲区在创建套接字时自动生成;
- 即使关闭套接字也会继续传送输出缓冲区中遗留的数据;
- 关闭套接字将丢失输入缓冲区中的数据。
输入输出缓冲区的默认大小一般都是 8K,可以通过 getsockopt() 函数获取:
1 | unsigned optVal; |
阻塞模式
对于TCP套接字(默认情况下),当使用 write()/send() 发送数据时:
- 首先会检查缓冲区,如果缓冲区的可用空间长度小于要发送的数据,那么 write()/send() 会被阻塞(暂停执行),直到缓冲区中的数据被发送到目标机器,腾出足够的空间,才唤醒 write()/send() 函数继续写入数据。
- 如果TCP协议正在向网络发送数据,那么输出缓冲区会被锁定,不允许写入,write()/send() 也会被阻塞,直到数据发送完毕缓冲区解锁,write()/send() 才会被唤醒。
- 如果要写入的数据大于缓冲区的最大长度,那么将分批写入。
- 直到所有数据被写入缓冲区 write()/send() 才能返回。
当使用 read()/recv() 读取数据时:
- 首先会检查缓冲区,如果缓冲区中有数据,那么就读取,否则函数会被阻塞,直到网络上有数据到来。
- 如果要读取的数据长度小于缓冲区中的数据长度,那么就不能一次性将缓冲区中的所有数据读出,剩余数据将不断积压,直到有 read()/recv() 函数再次读取。
- 直到读取到数据后 read()/recv() 函数才会返回,否则就一直被阻塞。
这就是TCP套接字的阻塞模式。所谓阻塞,就是上一步动作没有完成,下一步动作将暂停,直到上一步动作完成后才能继续,以保持同步性。
TCP数据报结构以及三次握手
TCP(Transmission Control Protocol,传输控制协议)是一种面向连接的、可靠的、基于字节流的通信协议,数据在传输前要建立连接,传输完毕后还要断开连接。
客户端在收发数据前要使用 connect() 函数和服务器建立连接。建立连接的目的是保证IP地址、端口、物理链路等正确无误,为数据的传输开辟通道。
TCP建立连接时要传输三个数据包,俗称三次握手(Three-way Handshaking)。可以形象的比喻为下面的对话:
- [Shake 1] 套接字A:“你好,套接字B,我这里有数据要传送给你,建立连接吧。”
- [Shake 2] 套接字B:“好的,我这边已准备就绪。”
- [Shake 3] 套接字A:“谢谢你受理我的请求。”
TCP数据报结构
带阴影的几个字段需要重点说明一下:
序号:Seq(Sequence Number)序号占32位,用来标识从计算机A发送到计算机B的数据包的序号,计算机发送数据时对此进行标记。
确认号:Ack(Acknowledge Number)确认号占32位,客户端和服务器端都可以发送,Ack = Seq + 1。
标志位:每个标志位占用1Bit,共有6个,分别为 URG、ACK、PSH、RST、SYN、FIN,具体含义如下:
- URG:紧急指针(urgent pointer)有效。
- ACK:确认序号有效。
- PSH:接收方应该尽快将这个报文交给应用层。
- RST:重置连接。
- SYN:建立一个新连接。
- FIN:断开一个连接。
Seq 是 Sequence 的缩写,表示序列;Ack(ACK) 是 Acknowledge 的缩写,表示确认;SYN 是 Synchronous 的缩写,愿意是“同步的”,这里表示建立同步连接;FIN 是 Finish 的缩写,表示完成。
连接的建立(三次握手)
客户端调用 socket() 函数创建套接字后,因为没有建立连接,所以套接字处于CLOSED状态;服务器端调用 listen() 函数后,套接字进入LISTEN状态,开始监听客户端请求。
这个时候,客户端开始发起请求:
当客户端调用 connect() 函数后,TCP协议会组建一个数据包,并设置 SYN 标志位,表示该数据包是用来建立同步连接的。同时生成一个随机数字 1000,填充“序号(Seq)”字段,表示该数据包的序号。完成这些工作,开始向服务器端发送数据包,客户端就进入了SYN-SEND状态。
服务器端收到数据包,检测到已经设置了 SYN 标志位,就知道这是客户端发来的建立连接的“请求包”。服务器端也会组建一个数据包,并设置 SYN 和 ACK 标志位,SYN 表示该数据包用来建立连接,ACK 用来确认收到了刚才客户端发送的数据包。
服务器生成一个随机数 2000,填充“序号(Seq)”字段。2000 和客户端数据包没有关系。
服务器将客户端数据包序号(1000)加1,得到1001,并用这个数字填充“确认号(Ack)”字段。
服务器将数据包发出,进入SYN-RECV状态。
客户端收到数据包,检测到已经设置了 SYN 和 ACK 标志位,就知道这是服务器发来的“确认包”。客户端会检测“确认号(Ack)”字段,看它的值是否为 1000+1,如果是就说明连接建立成功。
接下来,客户端会继续组建数据包,并设置 ACK 标志位,表示客户端正确接收了服务器发来的“确认包”。同时,将刚才服务器发来的数据包序号(2000)加1,得到 2001,并用这个数字来填充“确认号(Ack)”字段。
客户端将数据包发出,进入ESTABLISED状态,表示连接已经成功建立。服务器端收到数据包,检测到已经设置了 ACK 标志位,就知道这是客户端发来的“确认包”。服务器会检测“确认号(Ack)”字段,看它的值是否为 2000+1,如果是就说明连接建立成功,服务器进入ESTABLISED状态。
至此,客户端和服务器都进入了ESTABLISED状态,连接建立成功,接下来就可以收发数据了。
数据的传输过程
上图给出了主机A分2次(分2个数据包)向主机B传递200字节的过程。首先,主机A通过1个数据包发送100个字节的数据,数据包的 Seq 号设置为 1200。主机B为了确认这一点,向主机A发送 ACK 包,并将 Ack 号设置为 1301。
为了保证数据准确到达,目标机器在收到数据包(包括SYN包、FIN包、普通数据包等)包后必须立即回传ACK包,这样发送方才能确认数据传输成功。
此时 Ack 号为 1301 而不是 1201,原因在于 Ack 号的增量为传输的数据字节数。假设每次 Ack 号不加传输的字节数,这样虽然可以确认数据包的传输,但无法明确100字节全部正确传递还是丢失了一部分,比如只传递了80字节。因此按如下的公式确认 Ack 号: Ack号 = Seq号 + 传递的字节数 + 1,与三次握手协议相同,最后加 1 是为了告诉对方要传递的 Seq 号。
下面分析传输过程中数据包丢失的情况,如下图所示:
上图表示通过 Seq 1301 数据包向主机B传递100字节的数据,但中间发生了错误,主机B未收到。经过一段时间后,主机A仍未收到对于 Seq 1301 的ACK确认,因此尝试重传数据。
为了完成数据包的重传,TCP套接字每次发送数据包时都会启动定时器,如果在一定时间内没有收到目标机器传回的 ACK 包,那么定时器超时,数据包会重传。
重传超时时间(RTO, Retransmission Time Out)
这个值太大了会导致不必要的等待,太小会导致不必要的重传,理论上最好是网络 RTT 时间,但又受制于网络距离与瞬态时延变化,所以实际上使用自适应的动态算法(例如 Jacobson 算法和 Karn 算法等)来确定超时时间。
往返时间(RTT,Round-Trip Time)表示从发送端发送数据开始,到发送端收到来自接收端的 ACK 确认包(接收端收到数据后便立即确认),总共经历的时延。
重传时间
TCP数据包重传次数根据系统设置的不同而有所区别。有些系统,一个数据包只会被重传3次,如果重传3次后还未收到该数据包的 ACK 确认,就不再尝试重传。但有些要求很高的业务系统,会不断地重传丢失的数据包,以尽最大可能保证业务数据的正常交互。
TCP四次握手断开连接
建立连接需要三次握手,断开连接需要四次握手,可以形象的比喻为下面的对话:
- [Shake 1] 套接字A:“任务处理完毕,我希望断开连接。”
- [Shake 2] 套接字B:“哦,是吗?请稍等,我准备一下。”
- 等待片刻后……
- [Shake 3] 套接字B:“我准备好了,可以断开连接了。”
- [Shake 4] 套接字A:“好的,谢谢合作。”
建立连接后,客户端和服务器都处于ESTABLISED状态。这时,客户端发起断开连接的请求:
客户端调用 close() 函数后,向服务器发送 FIN 数据包,进入FIN_WAIT_1状态。FIN 是 Finish 的缩写,表示完成任务需要断开连接。
服务器收到数据包后,检测到设置了 FIN 标志位,知道要断开连接,于是向客户端发送“确认包”,进入CLOSE_WAIT状态。
注意:服务器收到请求后并不是立即断开连接,而是先向客户端发送“确认包”,告诉它我知道了,我需要准备一下才能断开连接。
客户端收到“确认包”后进入FIN_WAIT_2状态,等待服务器准备完毕后再次发送数据包。
等待片刻后,服务器准备完毕,可以断开连接,于是再主动向客户端发送 FIN 包,告诉它我准备好了,断开连接吧。然后进入LAST_ACK状态。
客户端收到服务器的 FIN 包后,再向服务器发送 ACK 包,告诉它你断开连接吧。然后进入TIME_WAIT状态。
服务器收到客户端的 ACK 包后,就断开连接,关闭套接字,进入CLOSED状态。
关于 TIME_WAIT 状态的说明
客户端最后一次发送 ACK包后进入 TIME_WAIT 状态,而不是直接进入 CLOSED 状态关闭连接,这是为什么呢?
TCP 是面向连接的传输方式,必须保证数据能够正确到达目标机器,不能丢失或出错,而网络是不稳定的,随时可能会毁坏数据,所以机器A每次向机器B发送数据包后,都要求机器B”确认“,回传ACK包,告诉机器A我收到了,这样机器A才能知道数据传送成功了。如果机器B没有回传ACK包,机器A会重新发送,直到机器B回传ACK包。
客户端最后一次向服务器回传ACK包时,有可能会因为网络问题导致服务器收不到,服务器会再次发送 FIN 包,如果这时客户端完全关闭了连接,那么服务器无论如何也收不到ACK包了,所以客户端需要等待片刻、确认对方收到ACK包后才能进入CLOSED状态。那么,要等待多久呢?
数据包在网络中是有生存时间的,超过这个时间还未到达目标主机就会被丢弃,并通知源主机。这称为报文最大生存时间(MSL,Maximum Segment Lifetime)。TIME_WAIT 要等待 2MSL 才会进入 CLOSED 状态。ACK 包到达服务器需要 MSL 时间,服务器重传 FIN 包也需要 MSL 时间,2MSL 是数据包往返的最大时间,如果 2MSL 后还未收到服务器重传的 FIN 包,就说明服务器已经收到了 ACK 包。
窗口协议
ARQ协议
ARQ协议主要包含:停等ARQ协议、连续ARQ协议,其中连续ARQ协议是为了解决停等ARQ协议信道利用率低的问题,目前传统的连续ARQ协议有回退N帧ARQ协议、选择性重传ARQ协议。
连续ARQ协议(Continuous ARQ)
回退N帧ARQ协议(Go-Back-N)
- 接收端丢弃从第一个没有收到的数据包开始的所有数据包
- 发送端收到NACK后,从NACK中指明的数据包开始重新发送
选择性重传ARQ协议(Selective Repeat)
- 发送端连续发送数据包但对每个数据包都设有个一个计时器
- 当在一定时间内没有收到某个数据包的ACK时,发送端只重新发送那个没有ACK的数据包